




This report summarizes the results of a research task directed toward investigation of the effects on vehicle operations of encroachments on cross-slope breaks at the outside edge of highway curves. Highway-Vehicle-Object Simulation Model (HVOSM) computer predictions of vehicle behavior were used to determine these effects.

Sufficient copies of the report are being distributed to provide a minimum of one copy to each regional office, one to each division office, and one copy to each State highway agency. Direct distribution is being made to the division offices.


> Sot Charles F. Scheffey Director, Office of Research Federal Highway Administration

## NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. The contents of this report reflect the views of the contractor, who is responsible for the accuracy of the data presented herein. The contents do not necessarily reflect the official policy of the Department of Transportation. This report does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein only because they are considered essential to the object of this document.


## TABLE OF CONTENTS

Page
INTRODUCTION ..... I
CRITERIA DEVELOPMENT ..... 2
HVOSM EXPERIMENTS ..... 9
CONCLUSIONS AND DESIGN IMPLICATIONS ..... 23
REFERENCES ..... 29
APPENDICES
APPENDIX A--HVOSM Modifications ..... 30
APPENDIX B--Representative HVOSM Output ..... 49
Number Title Page
HVOSM Test Conditions ..... 10
Metric AASHTO Controlling Horizontal Curves ..... 11
Assumed Maximum Path Curvature for Controlling Curves ..... 11
HVOSM Dynamic Response Results ..... 14
Comparison of Full and Partial Traversals ..... 15
Speed Sensitivity for Full Traversals ..... 15
Nominal Centripetal Lateral Acceleration--Full Traversal on Wide Shoulders ..... 17
Smoothed Results* For Driver Discomfort Factor-- Full Traversal on Wide Shoulders ..... 18
Smoothed Results for Driver Discomfort Factor-- Partial Traversal on Wide Shoulders and Traversal on Narrow Shoulders ..... 19
Maximum Negative Shoulder Cross Slopes Using $3 \mathrm{~m} / \mathrm{s}^{2}$ Discomfort Criterion ..... 20
Maximum Cross-Slope Breaks for Narrow Shoulders ..... 21
Cross-Slope Break Study Driver Inputs ..... 38

## LIST OF FIGURES

Number Title ..... Page
1
Assumed 'Design Path' for Analyses of Traversals on Cross-Slope Breaks ..... 4
2 Relationship Between Driver Discomfort Factor and Combination of Roll Angle and Lateral Acceleration ..... 7
3
Effect of Vehicle Lateral Placement on Effective Adverse Shoulder Slope ..... 22Broken Shoulder Designs for Full ( $\geq 1.6 \mathrm{~m}$ ) Shoulders24
Illustration of Erroneous Extensions of Ends of Ramps ..... 31
6 Problems with Ground Contact Point Determination Near Cross-Slope Breaks ..... 31
7 Example Card Image ..... 40
8 Subroutine DRIVER ..... 43
9 Subroutine PATH ..... 45
10 Subroutine PATHG ..... 46
11 Subroutine PROBE ..... 47
12 Subroutine SETD ..... 48
13 Example HVOSM Output for Studies of Cross-Slope Breaks-- Discomfort Factor and Lateral Acceleration vs. Time ..... 50
1415

## Introduction

One of the considerations in the design of highway cross section is the change in cross slope between the pavement and shoulder, referred to here as the cross-slope break.

AASHTO Policy (1,2) calls for a maximum cross-slope break of 7 percent. This requirement has existed since 1954 and is consistent with the combination of the AASHTO pavement cross slope of 1 percent for high-type surfaces and the maximum AASHTO shoulder cross slope of 8 percent specified for turf shoulders. AASHTO states that although this maximum break is not desirable (for safety), it is tolerable.

When designing superelevated horizontal curves according to AASHTO, the crossslope break requirement can constrain the shoulder cross-slope design on the outside of the curve. For example, with 6 percent superelevation, the crossslope break requirement limits the maximum negative shoulder cross slope to $l$ percent, which does not meet the AASHTO drainage requirements for even paved shoulders. The alternatives are to either design a positive shoulder slope or a rounded shoulder. The positive shoulder slope drains more runoff water across the pavement and creates problems with the melting of stored snow on the outside shoulder; and, the rounded shoulder design is more difficult to construct and maintain.

The research reported here is a limited study of the safety aspects of crossslope break to verify the adequacy of the AASHTO requirement. The primary research approach used the HVOSM computer simulation of vehicle traversals across various combinations of pavement and shoulder slope for a range of horizontal curvature.

## Criteria Development

One major purpose of shoulders is to provide a secondary recovery area for drivers who inadvertently drive off the traveled lane and onto the shoulder. Given that the designer expects this kind of traversal, the cross-slope break should be designed so it does not "cause" loss of control. This loss of control potential, of course, is most pronounced on horizontal curves where both correction paths and cross-slope breaks tend to be more severe.

The major adverse dynamic effect of cross-slope break traversals is lateral acceleration, which increases with speed, path curvature, cross-slope break, and negative shoulder slope. Assuming that the "design" event begins as a controllable traversal, the objective should be to limit lateral acceleration to a level which is stable at the tire-pavement interface and tolerable to the driver.

## Selection of Parameters for the Design Traversal

An inattentive driver can encroach on the shoulder at a horizontal curve in several ways:

1. A very shallow departure, in which the vehicle could be steered back to the pavement with minimal lateral displacement and a path curvature that is only slightly greater than the highway curve.
2. A moderate departure, in which the vehicle could be steered back to the pavement if the shoulder is wide enough and the cross-slope break and shoulder slope do not cause the vehicle to exceed available skid resistance, or result in intolerable centrifugal force on the driver.
3. A severe departure and/or out-of-control traversal, in which the vehicle cannot be steered back onto the pavement within the limits of the shoulder regardless of the amount of cross-slope break or shoulder slope.

A logical design is the cross-slope break which cannot effectively accommodate the most severe departures or out-of-control traversals but should
accommodate the other two kinds of traversals. Therefore, the moderate departure has been selected as the controlling event for design.

Although the moderate traversal of a vehicle onto the outside shoulder of a horizontal curve has an infinite number of paths, the most common shape seems clear. This nominal path would have an initial radius greater than that of the highway curve, but would decrease in radius until the vehicle reached maximum lateral offset. At this.point, the path radius would be Zess than the highway curve radius, and would then increase until the vehicle reached the highway curve radius within the normal travel lane. Because the variable dimensions and complexity of this path increase the difficulty of dynamic analysis, a simplified approach was used in this study to represent the criticality of the moderate traversal. Figure l depicts the 'design' path selected for this study. This path is circular, with a radius smaller than that of the highway curve. To simulate a full recovery back to the traveled way, the path is made tangent to a concentric arc ( $A-A$ ) that is 0.5 m inside the outside edge of shoulder. The basis for defining the path radius is a series of highway operational studies conducted by Glennon and Weaver (3). These studies identified the 95 th percentile transient path of drivers negotiating highway curves. The relationship derived by Glennon and Weaver, originally expressed in degrees of curve (English system), translates to the following radius relationship.

$$
\begin{aligned}
& R_{V}=\frac{19,825 R}{R+23,096} \\
& R_{V}=95 \text { th percentile vehicle path radius (metres) } \\
& R=\text { highway curve radius (metres) }
\end{aligned}
$$

One other hypothesis in developing the design traversal for cross-slope breaks relates to speed. The driver was assumed to be driving at design speed just prior to the initial encounter with the cross-slope break. At the first point of encounter with the cross-slope break, the driver was assumed to remove his foot from the accelerator, initiating a deceleration of $1 \mathrm{~m} / \mathrm{s}^{2}(0.1 \mathrm{~g})$ due to engine braking.


Figure 1. Assumed "Design Path" for Analyses of Traversals on Cross-slope Breaks

## Performance Criteria for Lateral Friction Demand

As stated earlier, the major adverse effect of cross-slope break traversals is lateral acceleration. If lateral acceleration is great enough, vehicle loss of control can occur either directly because of vehicle skidding or indirectly because intolerable centrifugal forces on the driver could cause reactions (braking, increased steer angle, decreased steer angle) that lead to loss of control. Setting a "design" level for lateral acceleration at the tire pavement interface requires answers to the following.

1. Level of friction avai iable on highway shoulders;
2. Consideration of dry or wet shoulder surface;
3. Margin of safety required between the "design" lateral acceleration and the expected level of available friction.

The answer to the third point is the easiest to rationalize. Given that the moderate shoulder traversal is a recovery from an infrequent event, a much lesser safety factor is needed than used for, say, highway curve design or stopping sight distance design which both involve maneuvering on the traveled way. When examining the (critical) design event, the required skid resistance need only be as high as the lateral acceleration demands.

Whether the design case should consider a wet shoulder surface is not clear. Paved shoulders, because they usually are not worn by traffic, should exhibit reasonably high wet pavement skid resistance. Gravel shoulders have nearly equal skid resistance for dry and wet surfaces. Turf shoulders, on the other hand, exhibit adequate skid resistance when dry but very low skid resistance when wet. It is probably reasonable to expect a skid resistance (coefficient of friction at the tire-pavement interface) of about 0.40 for paved and gravel shoulders with wet surfaces and for dry turf shoulders. A more appropriate expectation of skid resistance for wet turf shoulders would be about 0.25 .

Performance Criteria for Driver Discomfort
Although the study by Weaver and Glennon (3) showed that the selected shoulder traversal is entirely manageable without adverse cross slope, it would put the driver on the threshold of control loss if, with adverse cross slope, the level of discomfort (centrifugal force) causes him to brake or change his
steering. If he flattens his path, he will run off the shoulder and encounter the usually more severe cross-slope break at the outside edge of the shoulder. If he sharpens his path, the higher lateral friction demand may exceed available skid resistance. And, if he brakes, the resultant of both braking and cornering friction demand may exceed available friction. Therefore, the appropriate criterion is that level of discomfort below which most drivers could handle the selected shoulder traversal without performing one or more of the loss-of-control maneuvers described above. Figure 2 illustrates how cross slope affects driver discomfort.

A 1974 Calspan study of driver performance on a test-track course gives some guidance on an appropriate driver discomfort threshold. The pertinent conclusion from that study is: (4)
"Under unfamiliar route conditions, the average driver utilizes lateral acceleration of about $0.3 \mathrm{~g}\left(3 \mathrm{~m} / \mathrm{s}^{2}\right)$ in the speed range of $25-40 \mathrm{mph}(40-65 \mathrm{~km} / \mathrm{h}$ )." (Note: lateral acceleration was measured at the center of gravity of the vehicle.)

This result would be directly appropriate to the cross-slope break problem with five exceptions which probably tend to neutralize each other.

1. The Calspan tests cited above were performed on airport runways, which resulted in the drivers maneuvering around unsuperelevated curves. In such cases discomfort levels experienced by the drivers would be somewhat higher than the $0.3 \mathrm{~g}\left(3 \mathrm{~m} / \mathrm{s}^{2}\right)$ lateral acceleration measured at the c.g. of the vehicle. Thus, a slightly higher discomfort level for design could be inferred from these tests.
2. To be consistent with the safety-conservative design philosophy generally employed by AASHTO, a discomfort threshold lower than the average (say, 15th percentile) may be appropriate.
3. An even more appropriate design threshold would consider the relationship between driver discomfort and speed. Drivers such as those observed by Calspan who tolerated lower discomfort levels probably represent those drivers who would generate the lower end of the speed distribution under actual highway conditions. A design threshold selected for consistency with the concept of design speed would reflect the higher discomfort levels experienced by drivers who travel at or near design speed.
4. The distribution of discomfort levels on high-speed (over $100 \mathrm{~km} / \mathrm{h}$ ) highways would tend to reflect a lower overall threshold than


$$
\overrightarrow{f_{D}}=\text { Discomfort Factor }=\vec{a}_{l}+\vec{g}_{l}
$$

Where:

$$
\overrightarrow{\mathrm{a}}_{l}=\text { Lateral Acceleration of Occupants }
$$

$$
\overrightarrow{\mathrm{g}}_{l}=\text { Lateral Component of Gravity }
$$

$$
\phi=\text { Roll Angle }
$$

$\mathrm{a}_{l}, \mathrm{~g}_{l}$ in Vehicle Fixed Coordinate System

## VEHICLE ON SHOULDER WITH ADVERSE SLOPE



Figure 2. Relationship Between Driver Discomfort Factor and Combination of Roll Angle and Lateral Acceleration
measured on highways with moderate speeds, such as observed by Calspan.
5. The relative infrequency and involuntary nature of the design event justifies consideration of higher discomfort levels than those experienced in normal steering associated with operations on a highway.

Of the five points discussed above, three support selection of a greater than $3 \mathrm{~m} / \mathrm{s}^{2}(0.3 \mathrm{~g})$ discomfort level, and two support a lower threshold. Although there appears to be no strong justification for any specific discomfort level, a value of about $3 \mathrm{~m} / \mathrm{s}^{2}(0.3 \mathrm{~g})$ would thus appear reasonable. It should be noted that this measure would only apply to that portion of drivers who would need most of the shoulder width for their corrective maneuver.

The Highway-Vehicle-Object Simulation Model (HVOSM) is a computerized mathematical model originally developed at Cornell Aeronautical Laboratories and subsequently refined by Calspan Corporation (7). The HVOSM is capable of simulating the dynamic response of a vehicle traversing a three-dimensional terrain configuration. The vehicle is composed of four rigid masses; viz., sprung mass, unsprung masses of the left and right independent suspensions of the front wheels, and an unsprung mass representing a solid rear-axle assembly.

This study used the Roadside Design version of HVOSM that is currently available from FHWA. Certain modifications were necessary to perform the cross-slope break traversals and to interpret the appropriate dynamic response. These modifications, which included the following, are described in more detail in Appendix A.

1. Ground Contact Pcint Interpolation
2. Effective Range Angled Boundary Option (ERABO)
3. Driver discomfort factor output
4. Friction demand output
5. Terrain Table Generator
6. Driver Model inputs (damping, steer velocity, steer initialization)

The objective of the HVOSM experiments was to evaluate the dynamic effects of the cross-slope breaks associated with outside shoulder traversals on highway curves. Table lists the general conditions and specifications for the HVOSM runs, which are described more fully below.

## Basic Test Conditions

Since the most critical highway curve conditions are the AASHTO controlling curves for design, the AASHTO criteria relating design speed and design "f" were used to develop the geometrics (rounded) of controlling highway curves for $20 \mathrm{~km} / \mathrm{h}$ design-speed increments. The criterion curve used was the one developed for inclusion in the current draft version for the upcoming edition of AASHTO Geometric Design Policy; shown in Table 2.

## Table 1. HVOSM Test Conditions

| Condition | Specification |
| :---: | :---: |
| Highway Curve Radius | Metricated AASHTO Controlling Curves (metres) |
| Superelevation | Metricated AASHTO Controlling Curves (2 to 10 percent) |
| Shoulder Width | 2.7 metres |
| Shoulder Cross Slope | -2 to -6 percent |
| Available Friction at Interface | $f=0.8$ |
| Vehicle | 1971 Dodge Coronet |
| Initial Vehicle Speed | AASHTO Design Speed (km/h) |
| Vehicle Deceleration | Engine Braking @ $1 \mathrm{~m} / \mathrm{s}^{2}(0.1 \mathrm{~g})$ |
| Vehicle Path Radius | 95th percentile as measured by Glennon and Weaver (3) |
| Vehicle Path Radius Tangent Point | 2.2 metres from edge of traveled way |

Table 2. Metric AASHTO Controlling Horizontal Curves

| Design Speed (km/h) | Design f | Horizontal Curve Radius (Metres) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Superelevation Rate (Percent) |  |  |  |  |
|  |  | 2 | 4 | 6 | 8 | 10 |
| 120 | 0.092 | 1020 | 870 | 750 | 670 | 600 |
| 100 | 0.116 | - | 510 | 450 | 410 | 370 |
| 80 | 0.140 | - | 280 | 260 | 230 | 210 |
| 60 | 0.152 | - | 150 | 140 | 130 | 120 |
| 40 | 0.164 | - | 65 | 60 | 55 | 50 |

As previously described, the design shoulder traversal would have a circular radius that represents the 95th percentile path relative to each highway curve radius. Using the equation shown earlier, Table 3 gives the radius of vehicular traversals for each metricated AASHTO highway curve.

Table 3. Assumed Maximum Path Curvature for Controlling Curves

| Design Speed (km/h) | Path Radius (Metres) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 4 | 6 | 8 | 10 |
| 120 | 586 | 525 | 472 | 435 | 400 |
| :00 | - | 351 | 318 | 294 | 270 |
| 80 | - | 212 | 198 | 178 | 164 |
| 60 | - | 120 | 113 | 105 | 97 |
| 40 | - | 54 | 50 | 46 | 42 |

A full-width shoulder of 2.7 m with negative cross slopes of 2 , 4 , and 6 percent was used in the basic. HVOSM runs. . The circular traversal path for these runs was, as previously described, tangent to a concentric arc at 2.2 m from
the edge of pavement. A small number of similar runs were made to evaluate the dynamics of both traversals on narrower shoulders and partial traversals on full-width shoulders.

Since the objective of the HVOSM test was to study the demands for various lateral acceleration components irrespective of available skid resistance, a high (0.8) available friction factor was used. A 1971 Dodge Coronet was used as the design vehicle, since it seemed to best represent the current population of passenger cars among the vehicles that have been modeled for HVOSM application. Although there are some strong concerns about the dynamic effects of cross-slope breaks on articulated trucks, this HVOSM option was not available and would have been beyond the study scope to develop.

## Preliminary HVOSM Runs

A series of initial HVOSM runs was made to study the dynamic differences between (1) 4-wheel and 2 -wheel traversals onto the shoulder, and (2) entry to and exit from the shoulder. These runs were made at the most extreme test conditions as follows:

| Condition | Specification |
| :--- | :---: |
| Speed | $120 \mathrm{~km} / \mathrm{h}$ |
| Highway Radius | 600 m |
| Path Radius | 400 m |
| Superelevation | $10 \%$ |
| Negative Shoulder Slope | $6 \%$ |
| Cross-slope Break | $16 \%$ |
| Deceleration | None |

The results of these runs indicated that the 4 -wheel traversal and the entry to the cross-slope break produced the most extreme dynamic responses. For reasons of economy, therefore, the basic HVOSM experiment concentrated on full 4 -wheel traversals over four seconds of real time (sufficient to measure dynamic responses).

The 21 controlling highway curve geometries with three shoulder cross-slope dimensions ( $-2,-4$, and -6 percent) combine to make 63 potential test conditions. However, the budget for this study would not allow testing all of these conditions. Table 4 shows the 14 test conditions that were selected for inclusion in the basic experiment. These include the three highest design speeds and cross-slope breaks ranging in 2 percent increments from 4 to 16 percent.

Table 4 also shows the results from the basic HVOSM runs. An example time trace of these dynamics is shown for one experiment in Appendix B. In general, results indicate that the dynamic effects are most sensitive to shoulder cross slope and exceed reasonable oriver discomfort levels for the design conditions that produce the higher cross-slope breaks. The dynamic effects, however, seem fairly insensitive to cross-slope break within the range studied. The obvious relation between dynamic effects and cross-slope break is basically an indirect one that is a function of (1) the relation between negative shoulder slope and cross-slope break, and (2) the relation between highway curve (and path) radius and superelevation.

## HVOSM Experiments to Test Sensitivities

Because the 14 basic HVOSM runs did not produce a universal relationship among all of the parameters of interest, three additional HVOSM runs were made. Two of these were identical to two of the basic runs with the exception that they involved only 2 -wheel traversals with a lateral displacement of 0.8 m . A comparison of these runs with the 4 -wheel traversals, as shown in Table 5, indicates that 2 -wheel traversals (because of a less severe "effective.:' cross slope) have significantly less severe dynamic responses.

Table 4. HVOSM Dynamic Response Results

$* 1 \mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$

Table 5. Comparison of Full and Partial Traversals

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{TEST CONDITIONS} \& \multicolumn{3}{|c|}{TEST RESULTS} \\
\hline \begin{tabular}{l}
Speed \\
(km/h)
\end{tabular} \& Highway Design Curve
\[
\mathrm{R}(\mathrm{~m})
\] \& \[
\begin{aligned}
\& \text { Path } \\
\& R(\mathrm{~m})
\end{aligned}
\] \& \(e_{t w}\)
\(\%\) \& \(\mathbf{e}_{\text {sh }}\)

$\%$ \& Traversal Type \& | Max. Dis- |
| :--- |
| Comfort |
| Factor (g) | \& Max. Friction Demand (f) \& \[

$$
\begin{aligned}
& \text { Max. Roll } \\
& \text { Angle }\left(^{\circ}\right)
\end{aligned}
$$
\] <br>

\hline 120 \& 870 \& 525 \& 4 \& -4 \& Full \& . 32 \& . 27 \& 5.8 <br>
\hline 120 \& 870 \& 525 \& 4 \& -4 \& Partial \& . 25 \& . 23 \& 1.4 <br>
\hline 100 \& 510 \& 351 \& 4 \& -6 \& Full \& . 35 \& . 34 \& 7.2 <br>
\hline 100 \& 510 \& 351 \& 4 \& -6 \& Partial \& . 27 \& . 23 \& 4.8 <br>
\hline
\end{tabular}

Table 6 shows another sensitivity comparison wherein one of the basic test conditions was modified to run the vehicle at a speed $20 \mathrm{~km} / \mathrm{h}$ higher than design speed. The extreme responses associated with overdriving a design condition are apparent.

Table 6. Speed Sensitivity for Full Traversals

| TEST CONDITIONS |  |  |  |  | TEST RESULTS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Speed } \\ & (\mathrm{km} / \mathrm{h}) \end{aligned}$ | Highway <br> Design <br> Curve $\mathrm{R}(\mathrm{~m})$ | $\begin{aligned} & \text { Path } \\ & R(m) \end{aligned}$ | $e_{t w}$ <br> $\%$ | $e_{\text {Sh }}$ $\%$ $\%$ | Max. Dis- <br> Comfort <br> Factor (g) | Max. Fric- <br> tion <br> Demand (f) | Max. Roll <br> Angle ( ${ }^{\circ}$ ) |
| 120 | 510 | 351 | 4 | -6 | . 49 | . 42 | 8.5 |
| 100 | 510 | 351 | 4 | -6 | . 35 | . 34 | 7.2 |

## Analysis of HVOSM Results

The basic HVOSM results presented in the prior section of this report indicate that the driver discomfort factor generally exceeds the lateral acceleration on the tires (the difference being a function of the roll angle experienced on the negative shoulder slope). Therefore, the tentative performance criterion established for driver discomfort was the controlling threshold.

For comparison with the basic HVOSM test runs, Table 7 shows the nominal lateral acceleration for shoulder traversals computed with the standard centripetal force equation using the design speed, the shoulder cross slope, and the traversal path from Table 3. In comparing Tables 4 and 7, certain fairly distinct trends are apparent:

1. For a given curve design, the incremental dynamic effect varies directly at 1.5 times the increase in shoulder slope.
2. The incremental dynamic effect increases with decreasing horizontal curve radius for a given design speed.
3. The incremental dynamic effect increases slightly with design speed for any given combination of superelevation and shoulder slope.

Although there are some minor inconsistencies in the test results (due to minor flexibilities in the HVOSM path control algorithm), the noted trends allow a reasonable interpolation and extrapolation of the results as shown in Table 8.

It must be noted that Table 8 is for a full traversal onto a wider shoulder. For traversal onto narrower shoulders (less than 1.6 m ) and for partial traversals on wider shoulders, the discomfort levels would be less because the effective (negative) cross slope is less. Because the net effect of shoulder slope is apparent from the HVOSM tests, it is possible to estimate the driver discomfort levels for partial traversals. Table 9 shows the driver discomfort levels when the vehicle is half on the superelevation and half on the negative shoulder slope (approximately 0.8 m beyond the cross-slope break).

## Intrepretation of HVOSM Results

Based on the tentative criterion of a maximum 0.3 g for driver discomfort, Table 10 shows the tolerable shoulder cross-slope designs for full shoulders ( 1.6 m or more). This result is very similar to the 1965 AASHTO single recommendation of 0.07 maximum cross-slope break.

Table 7. Nominal Centripetal Lateral Acceleratioń. Full Traversal on Wide Shoulders

*f $=\frac{V^{2}}{127 R_{v}}-e_{s h} \quad ; \quad R_{v}=\frac{19,825 R}{R+23,096} \quad$ where: $R_{v}=$ Radius of "design" path

Table 8. Smoothed Results* for Driver Discomfort Factor-Full Traversal on Wide Shoulders


* Based on values from Tables 4 and 7

Table 9. Smoothed Results for Driver Discomfort Factor--Partial Traversal on Wide Shoulders and Traversal on Narrow Shoulders


Table 10. Maximum Negative Shoulder Cross Slopes Using $3 \mathrm{~m} / \mathrm{s}^{2}$ Discomfort Criterion

| Design Speed (km/h) | Superelevation of Highway Curve, '\% |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 8 | 7 | 6 | 5 | 4 | 3 | 2 |
|  | Maximum Negative Shoulder Cross Slope, \% |  |  |  |  |  |  |
| 120 | - | 0 | 1 | 2 | 3 | 4 | 6 |
| 100 | - | 0 | 1 | 2 | 3 | 4 | 6 |
| 80 | - | 0 | 2 | 2 | 3 | 4 | 6 |
| 60 | 0 | 1 | 2 | 2 | 3 | 4 | 6 |
| 40 | 0 | 1 | 2 | 2 | 3 | 4 | 6 |

Inspection of the sensitivity of these design recommendations to the criterion for driver discomfort reveals considerable variance in the recommendations over a range of $\pm .03 \mathrm{~g}$ in the discomfort threshold. Given this sensitivity; the uncertainty of the optimum level; the uncertainty of the distribution of lateral offset, speed and radius of actual shoulder traversals on highway curves; and the practicality of applying various results; consideration should be given to an 0.31 g threshold. With this threshold, an appropriate single recommendation for wider shoulders would be an 8 percent maximum crossslope break. In other words, for those drivers who recovered from a full traversal on to the shoulder, only a few would have maximum discomfort levels above 0.31 g . On the other hand, for a partial traversal, which is probably the more frequent event, most drivers would not exceed a maximum discomfort level of about 0.26 g assuming the same traversal path with the less lateral offset.

## Narrow Shoulder Design Considerations

Adoption of driver discomfort level as a basis for cross-slope break design has important implications in the treatment of narrow shoulders. When less than full-width shoulders are selected for design, an implicit decision has been made to not accommodate 4 -wheel traversals with the designed shoulder. Traversals which are possible on narrow shoulders, and for which the crossslope break should therefore be designed, include a range of 2 -wheel traversals.

As has been demonstrated previously, the driver discomfort level is largely a function of negative shoulder slope. Figure 3 illustrates the sensitivity of lateral placement of the vehicle during a 2 -wheel traversal on effective negative shoulder slope. For increasingly wider shoulders, the maximum effective negative shoulder slope increases. It can be shown, therefore, that relatively large negative slopes are tolerable on very narrow shoulders. Conversely, as shoulder width increases, permissible shoulder slopes must decrease in order to maintain the established driver discomfort level.

Table 11 gives tolerable maximum cross-slope breaks for shoulders less than 1.6 m in width. It should be emphasized that cross-slope breaks employing values under those shown in Table 11 will produce an operationally superior (in terms of lower driver discomfort levels) design.

Table 11. Maximum Cross-Slope Breaks for Narrow Shoulders

| Shoulder Width $(\mathrm{m})$ | Maximum Cross-Slope Break \% |
| :---: | :---: |
|  | 18 |
| 0.6 | 16 |
| 1.0 | 14 |
| 1.2 | 12 |
| 1.4 | 10 |
| 1.6 | 8 |



Figure 3. Effect of Vehicle Lateral Placement on Effective Adverse Shoulder Slope

1. Shoulder Slope. --The study results clearly show that the driver discomfort level (centrifugal acceleration) in negotiating shoulder traversals on curves is sensitive to speed, degree of curve, shoulder slope, and the lateral extent of movement onto the shoulder. For a given path and speed of shoulder traversal, therefore, the driver's discomfort mainly increases with shoulder slope and very little, if any, with the amount of cross-slope break. This is illustrated by Figure 12 in the Appendix, which shows that maximum driver discomfort occurs when all four tires are on the shoulder, not when the vehicle crosses the break. Thus, for a given design speed and superelevation of a horizontal curve, the maximum tolerable crossslope break is a function of the shoulder slope; or in other words, the shoulder slope rather than the cross-slope break itself is the controlling feature.

From the above discussion, the most important conclusion of this research is: where a negative shoulcer slope is tolerable for a recovery maneuver, that shoulder slope should be the minimum that is consistent with other needs for the slope. From a practical design point of view, such other needs primarily involve providing sufficient slope to drain the shoulder. The practice of minimizing the negative shoulder slope will maximize safety for drivers who need the shoulder as a secondary recovery area.
2. Cross-slope Break Requirements for Full Shoulders.--For paved or gravel shoulders with widths of 1.6 m or greater, where the shoulder cross slope is intended to accommodate up to a 4 -wheel traversal onto the shoulder, research indicates a maximum tolerable cross-slope break of 8 percent. For superelevation rates between 2 and 6 percent this criterion allows maximum (negative) shoulder slopes ranging from 6 to 2 percent respectively. For superelevation rates exceeding 6 percent, a different kind of shoulder slope design is required. The alternatives are to either carry the superelevation rate across the shoulder, or to continue this upward slope about half way across the shoulder and then break the remainder (or outer half) of the shoulder with a negative slope. Figure 4 illustrates this practice.


Figure 4. Broken Shoulder Designs for Full $(\geq 1.6 \mathrm{~m})$ Shoulders
3. Cross-slope Break Requirements for Narrow Shoulders.--For paved or gravel shoulders with widths less than 1.6 m , which are designed to only accommodate 2 -wheel traversals within the bounds of the shoulder, this research has demonstrated that the maximum tolerable cross-slope break varies as follows:

| Shoulder Width (m) | Maximum Cross-slope Break \% |
| :---: | :---: |
| 0.6 | 18 |
| 0.8 | 16 |
| 1.0 | 14 |
| 1.2 | 12 |
| 1.4 | 10 |
| 1.6 | 8 |

These greater cross-slope breaks do not further compromise safety beyond the implicit decision of choosing the narrower shoulder. Again, as is the case with full shoulders, minimizing the negative shoulder slope consistent with other design requirements (primarily drainage) will maximize the safety of the narrow shoulder design.

The conclusion of greater tolerable cross-slope breaks for narrower shoulders has important implications for rehabilitation projects where (l) narrow shoulders cannot be widened, (2) pavements are widened at the expense of shoulder width; and/or (3) superelevation rates are increased on roadways with narrow shoulders. In these cases where the prior decision has been made to use a narrower shoulder, the greater tolerable cross-slope break designs can accommodate "safe" (i.e., 2-wheel) shoulder encroachments as long as the encroachment path remains on the shoulder. In this case, the caveat expressed by Conclusion $l$ regarding minimum possible shoulder slopes remains as the primary principle of shoulder design. Also, in establishing design criteria the narrower shoulders with greater tolerable cross-slope breaks should be weighed against the sensitivity of traffic operations, the probability of incidents, the distribution of lateral displacements for encroaching vehicles, and other conditions.
4. Special Considerations for Turf Shoulders.--Because of greater required slopes for drainage and lower available friction, full width turf shoulders present a dilemma in satisfying the proposed cross-slope break requirements. Not only can the AASHTO shoulder cross slope of -8 percent not be met using the 8 percent cross-slope break recommendation for superelevated curves, but also for the path criterion used in this research, even a 2 percent cross slope on a turf shoulder with a 0.25 wet coefficient of friction will produce skidding.

The research therefore suggests that turf shoulders on the outside of controlling curves with negative slopes may not provide for recovery of moderate traversals. Possible design solutions which need further study include provision for positive slopes throughout the curve; and consideration of paved or gravel shoulder surfaces along the outside of such curves.

Another implication of this discussion concerns the use of turf shoulders on tangent sections of higher speed roadways. On a $100 \mathrm{~km} / \mathrm{h}$ roadway, a wet turf shoulder with a slope of -8 percent and a coefficient of friction of 0.25 could only accommodate a 4 -wheel traversal with a 600 m path radius without skidding. Since this kind of shoulder design may not satisfy the objective for secondary recovery, it may be necessary for high-speed tangent sections to either have flatter turf shoulders (if possible), or have paved or gravel surfaces. The third option, for existing high-speed tangent sections, is to insure a safe traversable roadside with flat roadside slopes clear of fixed objects. Further research on turf shoulders is suggested.
5. Implications for Roadside Slopés on Highway Curves.--The dynamic responses observed with HVOSM for negative shoulder slopes up to -6 percent indicate the severity of vehicular traversals onto the roadsides of highway curves. For example, for a $100 \mathrm{~km} / \mathrm{h}$ speed and 370 m radius of traversal path, the driver discomfort level would reach about 0.63 g on a $4: 1$ roadside slope. More important, the lateral friction demand would be close to 0.55 g and
the roll angle might be severe enough to create overturning. This kind of relationship between highway curves and overturning accidents, particularly fatal accidents, seems to be partially substantiated by two recent research efforts ( 5,6 ). The implications for design might be to (1) design flatter than normal roadside slopes on highway curves (2) justify a greater need for guardrail related to embankment configurations on highway curves than on tangent sections, and (3) provide wider than normal clear zones on highway curves.
6. Consideration for Underdesigned Existing Highway Curves. --The one HVOSM comparison to test speed sensitivity indicates that the higher cross-slope breaks on existing highway curves where the design speed is at least 10 $\mathrm{km} / \mathrm{h}$ less than the speed limit (expected operating speed) may cause loss-of-control for otherwise controllable shoulder traversals. Therefore, modifying the shoulder slope to carry the superelevation across the shoulder may be a worthwhile accident countermeasure at such locations, providing drainage of the shoulder across the pavement does not present a problem.
7. Consideration of Trucks in Design. --This study was constrained to the consideration of the dynamic responses of passenger vehicles in traversing shoulders on highway curves. Because of the higher centers of gravity and the fifth-wheel characteristics of truck combinations, the dynamic responses of these vehicles ta similar traversals would probably be more severe than those observed for passenger vehicles. How much more severe these responses would be, however, cannot be estimated from the results of this research.

If trucks were found to be much more sensitive to cross-slope break traversals than passenger vehicles, two additional questions much be addressed for design recommendation. First, do professional truck drivers exhibit higher tolerable levels of driver discomfort? And, second, do shoulder traversals by trucks occur often enough to justify the truck as the "design" vehicle for cross-slope break recommendations? Although truck shoulder
traversals may represent only a small portion of all such events and, therefore, trucks may not be the appropriate "design' vehicle, the application of Conclusion 1 will help to ameliorate any increased sensitivities exhibited by trucks. For special cases in which the truck is identified as the design vehicle, the use of a positive (upward) shoulder slope sooner than called for in Conclusion 2 may be appropriate.

## References

1. American Association of State Highway Officials, A Policy on Geometric Design of Rural Highways, 1954.
2. American Association of State Highway Officials, A Policy on Geometric Design of Rural Highways, 1965.
3. Glennon, J.C. and Weaver, G.D., "Highway Curve Design for Safe Vehicle Operations," Highway Research Record No. 390, 1972.
4. Rice, R.S. and Dell, Amico F., An Experimental Study of Automobile Driver Characteristics and Capabilities, Calspan Report No. ZS-5208-k-1, March 1974.
5. Wright, Paul H., and Zador, Paul, "A Study of Fatal Rollover Crashes in Georgia," for presentation at the Annual Transportation Research Board Meeting, January 1981.
6. Hall, Jerome W, and Zador, Paul, "A Survey of Fatal Overturning Crash Sites," for presentation at the Annual Transportation Research Board Meeting, January 1981.
7. McHenry, R.R., Deleys, N.J., Vehicle Dynamics in Single Vehicle Accidents--Validation and Extensions of a Computer Simulation, CAL Report No. VJ-2251-3, Contract No. CPR-11-3988, December 1968.
8. McHenry, R.R., "The Astro Spiral Jump--An Automobile Stunt Designed via Simulation," SAE Paper No. 7600339, Automotive Engineering Congress and Manufacturing Meeting, October 18-33, 1976.
9. McHenry, R.R., Deleys, N.J., Automobile Dynamics--A Computer Simulation of Three-Dimensional Motions for Use in Studies of Braking Systems and of the Driving Task, CAL Report No. VJ-2251-V7, Contract No. CPR-11-3988, August 1970.
10. Segal, D.J., Ranney, T.A. Evaluation of Horizontal Curve Requirements, Final Report No. FHWA-RD-79-48, Washington: Federal Highway Administration, October 1978.

## APPENDIX A <br> HVOSM Modifications

To perform this research, a number of refinements and revisions to the Highway-Vehicle-Object Simulation Model (HVOSM) program were required. These refinements and revisions included changes in the definition of the terrain, additional outputs of vehicle responses and revision of the Path-Following Driver Model. Additionally, two preprocessing programs were developed to simplify the interface between highway definition and HVOSM inputs.

## Ground Contact Point Interpolation

Prior to the present research effort, the FHWA-distributed version of the HVOSM computer program contained the assumption that the terrain slopes under each wheel of the simulated vehicle remain constant within the terrain region that is covered by the combination of camber, pitch and steer angles. The elevations and slopes of the terrain under the individual wheel centers of the vehicle were obtained by interpolation of the terrain tables. A "ground plane" through the terrain point directly under the wheel center was used in the determination of the ground contact point.

Earlier simulation studies of ramp traversals (e.g., Ref. 7, 8) revealed a minor problem with erroneous extensions of the ends of ramps (see Figure 5). In the present application to cross-slope breaks, the wheel centers and corresponding ground contact points can be on opposite sides of an interpolation boundary (see Figure 6) and the erroneous terrain elevations can be sustained for a significant period of time. An alternate version of the HVOSM RD2 which was obtained from Calspan Corporation was found to contain changes dated 9/16/76 in Subroutine INTRP5(INDX) which corrected the interpolation problem related to a simulated transition across a pavement edge that includes a significant slope change.

The related changes were incorporated into the FHWA-distributed version of the HVOSM RD2 which is being utilized for the present research effort as follows:


Figure 5. Illustration of Erroneous Extensions of Ends of Ramps


Figure 6. Problems With Ground Contact Point Determination Near Cross-slope Breaks

1. Prior to calculation in Subroutine INTPRS (INDX) of the pitch and slope of the terrain under each individual wheel, the tire contact point as determined from the previous rolling radius and current orientation is calculated. This contact point is then used for calculation of the pitch and camber of the terrain under the wheel. The code associated with this modification is as follows:
```
1\emptysetTCPH = COS (PHII (INDX))
    TSPH = SIN (PHII(INDX))
    BMTX13 = - AMTX (1,2) * TSPH + AMTX (1,3) * TCPH
    BMTX23 = - AMTX (2,2) * TSPH + AMTX (2,3) * TCPH
    XXX = XP(INDX) + BMTX13* HI (INDX)
    YYY = YP(INDX) + BMTX23 * HI (INDX)
```

where: PHII (INDX) = Camber Angle of wheel INDX relative to vehicle
$X X X \quad=X$ Coordinate of Ground Contact Point of wheel INDX
YYY $\quad=\quad$ Coordinate of Ground Contact Point of wheel INDX
$\mathrm{HI}(I N D X)=$ Previous time interval rolling radius for wheel INDX
2. Subroutine 1 NTRP5 then calculates the pitch and camber of the terrain under wheel INDX as previously documented in Reference 7 and Reference 9.
3. Prior to the return from Subroutine INTRP5(INDX), the pitch, camber and elevation of the terrain under the ground contact point is used to calculate the corresponding elevation of the terrain under the wheel center for subsequent use in subroutine GCP (I). The code associated with this is as follows:

```
    TCPG = TCPG **SIN (THGI (INDX))
    TCB = - SIN (PHGI(INDX))
    TCG = COS (THGI (INDX)) \thereforeTCPG
    XDF = XP(INDX) - XXX
    YDF = YP(INDX) - YYY
    ZPGI(INDX) = ZPGI(INDX) - (TCA * XDF + TCB * YDF)/TCG
```

where: THGI (INDX) = Pitch angle of terrain under wheel INDX with respect to the space-fixed axes

PHGI (INDX) = Camber angle of terrain under wheel INDX with respect to the space-fixed axes
$X P(I N D X)=X$ coordinate of the wheel center INDX with respect to the space-fixed axes
$Y P(I N D X)=Y$ coordinate of the wheel center INDX with respect to the space-fixed axes
ZPGI (INDX) $=Z$ coordinate of the wheel center INDX with respect to the space-fixed axes

## Effective Range Angled Boundary Option (ERABO)

The original purpose of the angled boundaries as documented in Reference 9 was to permit the simulation of abrupt slope changes and/or linear terrain irregularities such as ridges that intersect the roadway at angles substantially different from 90 degrees (e.g., edges or cracks in pavement, railroad tracks, etc.). The angled boundaries served to preclude the "rounding," by interpolation, of these profile changes. Up to four angled boundaries were available to the user, but the user was restricted by the requirement that there be a minimum of two tabular values between like boundaries (i.e., two angled boundaries or two $Y^{\prime}$ boundaries) or between a boundary and the beginning or end of a terrain table.

Within the present research effort, the angled boundaries have been used to approximate chords of a circular arc representing the edge of the pavement and separating a roadway curve from the shoulder. This utilization requires placement of the angled bounderies at close intervals not in keeping with the stated limitations of the original version.

The code in subroutine INTRP5(IND) of the HVOSM RD2 version uses the following interpolation procedure for choosing the appropriate angled boundary:

1. The highest number terrain table applicable to the wheel is determined.
2. The particular grid segment within which the wheel is located is determined.
3. The angled boundaries are scanned and the first angled boundary to pass through the grid segment in which the wheel is located is chosen.

Modification of the procedure to limit the ranges of the angled boundaries and, thereby, to permit their use to approximate a circular arc is the objective of the ERABO option. It gives the HVOSM user control over the $X$ and/or $Y$ range in which a specific angled boundary is used.

When used, the ERABO option performs additional tests to determine if the ground contact coordinates are within the effective range of a given angled boundary. If they are, the modified program will proceed with the interpolation procedure. If not, the modified program ignores the particular
angled boundary and continues the scan of other angled boundaries. Source modification of HVOSM included the following:

1. Modification of subroutine BLKø5 to include the inputs defining the ranges of boundaries.
2. Modification of Subroutine INTRP5(IND) to include additional tests of the ranges of the angled boundaries.

Other related modifications were made in subroutine BLKø5 and COMMON/INPT/ to permit the input of up to eight angled boundaries per table.

It was also found to be necessary to automate the generation of multiple angled boundaries and their corresponding effective ranges for the approximation of the successive chords of a circular arc representing the edge of the pavement and separating the roadway curve from its shoulder.

## Additional Outputs

Additional calculations and outputs of the existing HVOSM RD2 program were found to be required to enable the evaluation of the cross slope break study. The revisions were as follows:

1. "Discomfort Factor'!--The lateral acceleration output of HVOSM corresponds to measurements made with a "hard-mounted," or body-fixed accelerometer oriented laterally on the vehicle. During cornering, the lateral acceleration of the vehicle is, of course, directed toward the center of the turn. On a superelevated turn, the component of gravity that acts laterally on the vehicle is also directed toward the turn center. Thus, the lateral acceleration output is increased by superelevation.

Since the vehicle occupants respond to centrifugal force, their inertial reaction is toward the outside of a turn and therefore the component of gravity that acts laterally on them in a superelevated turn reduces the magnitude of the disturbance produced by cornering. A corresponding program output has been defined to evaluate occupant discomfort in turns.

The effects of a vehicle's roll angle and lateral acceleration on occupants are combined in a "discomfort factor" relationship which represents the net
lateral disturbance felt by the occupants (i.e, the occupants' reaction to the combined effects of the lateral acceleration and roll angle).

The "discomfort factor" is coded in the following form:

$$
\text { DISCOMFORT FACTOR }=- \text { YLAT }+1.0 * \operatorname{SIN~} \emptyset
$$

where: DISCOMFORT FACTOR $=G$ units

$$
\begin{aligned}
\text { YLAT } \quad= & \text { Vehicle Lateral Acceleration in vehicle-fixed } \\
& \text { coordinate system, } G \text { units } \\
= & \text { Vehicle roll angle, radians. }
\end{aligned}
$$

Calculations related to the discomfort factor and corresponding outputs were incorporated into the HVOSM.
2. Friction Demand.--The friction demand is defined to be the ratio of the side force to the normal load at an individual tire. The friction demand is indicative of the friction being utilized by each individual tire.

The standard outputs of HVOSM include the side force and normal force for each tire. Coding changes were incnrporated to calculate and print out the friction demand for each tire at each interval of time.

## Terrain Table Generator

The primary research mode of Federal Highway Administration Research Contract DOT-FH-11-9575, "Effectiveness of Design Criteria for Geometric Elements," uses the HVOSM technology for analytical study of the dynamics of vehicle traversals of highway curves with widely varying combinations of geometrics.

The version of the HVOSM maintained by FHWA has the capability of accepting a 3-dimensional definition of the highway surface. The manual generation of these inputs to the HVOSM, however, is time consuming, and the nature and number of geometric configurations to be studied in the contract required automation of the procedure.

The Terrain Table Generator (TTG) was developed as an effective, cost-beneficial interface between standard roadway geometric descriptors and inputs to the HVOSM.

## Driver Model

A recognized problem in the use of either simulation models or full-scale testing in relation to investigations of automobile dynamics is the manner of guiding and controlling the vehicle. Repeatability is essential, and the control inputs must be either representative of an average driver or optimized to achieve a selected maneuver without "hunting" or oscillation. In the present investigation of geometric features of highways, the transient portions of the vehicle responses constitute the justification for application of a complex computer simulation. The steady-state portions of the vehicle responses can be predicted by means of straightforward hand calculations. Thus, it is essential that the transient responses should not be contaminated by oscillatory steering control inputs.

The Driver model contained in the distributed version of the HVOSM Vehicle Dynamics program was to be incorporated into the HVOSM Roadside Design version, but it proved to be inadequate for the present research effort. Therefore, new routines were written for the HVOSM Roadside Design program to accomplish the following:

> 1. A "wagon-tongue" type of guidance algorithm to calculate path errors.
> 2. Interface within HVOSM to convert inputs of path descriptors to second-order polynomial definitions of the desired path.
> 3. Inclusion of a "neuro-muscular" filter within HVOSM to enable smooth driver steering activity.

The related revisions to the Driver model were incorporated into the FHWAdistributed Roadside Design version of the HVOSM. However, the revised pathfollowing algorithm was found to produce sustained oscillations about a specified path under some operating conditions. Since the extent of oscillation is dependent on the guidance system parameters as well as the vehicle speed and path curvature, it is possible to obtain peak values of transient response predictions that reflect an artifact of the guidance system rather than a real effect of the highway geometrics under investigation. For example, in Reference 10, comparisons are made between peak transient and steady-state response values which are believed to be more reflective of effects of the guidance system than of the simulated roadway geometrics.

Therefore, the following additional modifications were added to the Driver model:

1. Damping

A damping term was added to limit the extent of steering activity. Initial runs utilizing the damping term exhibited a reduction in the steering activity as expected. However, they were also found to contain an unexpected initial disturbance. This fact led to the discovery of an initialization problem in the path-following algorithm (see (3) below).
2. Steer Velocity

In addition to the damping term, an adjustable limit on the steering angle velocity was incorporated in the path-follower algorithm, enabling the user to limit the maximum instantaneous front wheel steer velocity to a selected value.

## 3. Steer Initialization

For runs such as those being performed in relation to the cross-slope break study, the starting point must be relatively close to the crossslope break to achieve an economical use of computer time. Thus, the input of an initial steer angle to approximate steady-state steer was required. Previously, the path-follower algorithm was initialized to a steer angle of 0.0 degrees, regardless of the input value for the initial steer angle. Corresponding revisions were made to Subroutine DRIVER to enable input of an initial steer angle.

A revised listing of Subroutine DRIVER, including the cited modifications is presented in Figure 8.

Table 12 documents the values for probe length, PGAIN and QGAIN utilized to date for the reported research effort. The tables are presented as a guide for future utilization of the revised Driver model.

Table 12. Cross-Slope Break Study Driver Inputs

| Run No. | $\begin{aligned} & \text { Speed } \\ & \mathrm{m} / \mathrm{s} \\ & \hline \end{aligned}$ | $\begin{gathered} \text { Vehicle } \\ \text { Path } \\ \mathrm{m} \\ \hline \end{gathered}$ | $\begin{aligned} & \text { Path } \\ & V^{2} / R \end{aligned}$ | Break $\qquad$ | PGAIN <br> Deg/m | $\begin{gathered} \text { QGAIN } \\ \text { Deg-Sec/m } \end{gathered}$ | Probe Length $\qquad$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CSB1 | 33.2 | 400 | 2.7 | 12 | 0.16 | 0.010 | 31.4 |
| CSB2 | 33.2 | 400 | 2.7 | 16 | 0.16 | 0.010 | 31.4 |
| CSB3A | 33.2 | 435 | 2.5 | 12 | 0.08 | 0.008 | 16.5 |
| CsB6A | 33.2 | 525 | 2.1 | 8 | 0.05 | 0.005 | 31.3 |
| CSB7 | 33.2 | 586 | 1.9 | 4 | 0.16 | 0.010 | 31.4 |
| CSB8 | 33.2 | 586 | 1.9 | 8 | 0.16 | 0.030 | 31.4 |
| CSB9B | 27.7 | 270 | 2.8 | 14 | 0.13 | 0.008 | 18.3 |
| CSBI2A | 27.7 | 318 | 2.5 | 10 | 0.16 | 0.017 | 13.2 |
| CSBI3A | 27.7 | 351 | 2.2 | 6 | 0.14 | 0.010 | 18.3 |
| CSB14C | 27.7 | 351 | 2.2 | 10 | 0.14 | 0.010 | 18.3 |
| CSBI4PA | 33.2 | 351.6 | 3.1 | 10 | 0.10 | 0.010 | 23.4 |
| CSBIIPP | 27.7 | 351.6 | 2.2 | 10 | 0.14 | 0.010 | 18.3 |
| CSBI6A | 22.3 | 164 | 3.0 | 14 | 0.25 | 0.021 | 12.7 |
| CSB18D3 | 22.3 | 198 | 2.5 | 8 | 0.32 | 0.042 | 12.2 |
| CSB19D2 | 22.3 | 198 | 2.5 | 12 | 0.32 | . 000 | 12.2 |
| CSB20A | 22.3 | 212 | 2.4 | 8 | 0.27 | 0.027 | 12.7 |

## HVOSM Run Setup Procedure

Procedure for setup of a Cross-Slope Break (CSB) study run used in the present research effort:

1. Analytically determine the extent of roadway required to meet the requirements of the particular run (i.e., roadway radius, vehicle path radius, etc.).
2. Perform an ERABO run to define the edge of roadway. Put the ERABO outputs in HVOSM form to define the angled boundaries and their effective ranges.
3. Perform two TTG runs, one with the shoulder slope, one with the roadway superelevation.
4. Determine, from TTG outputs, the shoulder and roadway points for each table.
5. Insert the corresponding points for the shoulder into the roadway tables.
6. Insert the roadway/shoulder tables into the HVOSM input deck.
7. Add the angled boundaries and their effective ranges to the HVOSM input deck.
8. Determine analytically the vehicle's heading, location and desired path inputs required to cross onto the shoulder from the roadway at approximately 0.7 sec after initial simulation time.
9. Insure the vehicle is dynamically in equilibrium and perform the simulation run.

| Cross | Break | AK STUDY: | : FH-11-95 | 575 |  |  |  |  | 0100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 4.50 | 0.010 | 0.010 | 70.0 | 0.0 | 0.0 |  |  | 0101 |
| O | 0 |  |  |  |  |  |  |  | 0102 |
|  | 1 |  |  |  |  |  |  |  | 0103 |
|  | 1 | 1 | 1 | 1 | 1 | 11 | , |  | 0104 |
| 1971 100 | DOCE CORONE | NET 4-000 | OR SEDAN |  |  |  |  |  | 0200 |
| 8.43 | 0.51 | 0.82 | 3760.0 | 23000.0 | 23300.0 | 530.0 | 550.0 |  | 0201 |
| 49.3 | 68.7 | 59.8 | 61.8 | 0.0 | 47.0 |  |  |  | 0202 |
| 0.0 | -14.0 | 0.0 | 0.0 | 14.0 | 0.0 | 10.82 | 10.68 |  | 0203 |
| 105.0 | 189.0 | 600.0 | 588.0 | 600.0 | 0.50 | -2.40 | 2.1 |  | 0204 |
| 120.0 | 324.0 | 600.0 | 864.0 | 600.0 | 0.50 | -4.40 | 3.6 |  | 0205 |
| 6.85 | 40.0 | 0.10 | 7.48 | 38.0 | 0.10 |  |  |  | 0206 |
| 40400.0 | -5100. | 0.02 |  |  |  |  |  |  | 0207 |
|  |  | 0.559 |  |  |  |  |  |  | 0208 |
| -3.0 | 3.0 | 1.0 |  |  |  |  |  |  | 0209 |
| -0.43 | -0.95 | -1.22 | -1.26 | -0.98 | -0.41 | 0.0 |  |  | 1209 |
| Fireston | IE RADIAL | VI |  |  |  |  |  |  | 0300 |
| 1.0 | 1.0 | 1.0 | 1.0 | 6.0 | 0.25 |  |  |  | 0301 |
| 1450.0 | 3.0 | 10.0 | -37.0 | 13.2 | 3043. | . 58 | 91435. | 1.0 | 1301 |
| . 78 |  |  |  | 13.2 |  |  |  |  | 0302 |
| 400 METE | ER RADIUS, | S,LH TUPN | N, H/FILTE | R\&DAPIN |  |  |  |  | 0400 |
| 0.0 | 5.0 | 1.0 | 0.0 | 0.0 | 1.0 |  |  |  | 0401 |
| -199.0 | -199.0 | -199.0 | -199.0 | -199.0 | -199.0 |  |  |  | 1401 |
| 1.0 | 1.0 | 1.0 | 0.05 | . 00905 | 0.819 | 0.0 |  |  | 0402 |
| 4.0 | 100.0 | 960.0 | 0.0 | 1.92000 | 120.0 |  |  |  | 0403 |
| -. 36384 | 0.0 | -. 36384 | 6000. | -. 36384 | 9000. - | -. 363841200 | 2000.0. |  | 0404 |
| 0.0 | 0.10 | 1236.0 | 0.0 | 1.0 | 500.0 | 0.0007500 | 0.00005 |  | 0405 |
| CSB\#1,60 | 600 PETER | Radius, 1 | 107.SE,-27/ | SHAMER |  |  |  |  | 0500 |
| -600.00 | 0060.00 | 120.00 | 0.0 | 6000.00 | 300.00 | 8.0 |  |  | 0501 |
| -158.705 | 5-207.847-2 | 7-264.281 | 1-328.052 | -399.220 | -477.856 | -564.039 | -657.868 |  | 1501 |
| 89.5 | 88.5 | 87.5 | 86.5 | 85.5 | 84.5 | 83.5 | 82.5 |  | 2501 |
| 0.0 | -0.49 | -1.07 | -1.65 | -2.22 | -2.80 | -3.38 | -3.95 | -4.53 | 3501 |
| -4.50 | -4.38 | -4.20 | -3.94 | -3.60 | -3.19 | -2.71 | -2.16 | -1.53 | 1501 |
| -0.83 | -0.05 | 0.79 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5501 |
| 0.0 | -0.79 | -1.67 | -2.55 | -3.42 | -4.30 | -5.18 | -6.05 | -6.93 | 6501 |
| -6.90 | -6.78 | -6.60 | -6.33 | -6.00 | -5.59 | -5.11 | -4.55 | -3.91 | 7501 |
| -3.21 | -2.43 | -1.58 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8501 |
| 0.0 | -1.09 | -2.27 | $-3.45$ | -4.62 | -5.80 | $-6.98$ | -8.15 | -9.33 | 9501 |
| -9.30 | -9.18 | -8.99 | -8.73 | -8.39 | -7.98 | -7.50 | -6.94 | -6.30 | 10501 |
| -5.59 | -4.81 | -3.96 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 11501 |
| 0.0 | -1.39 | -2.87 | -4.35 | -5.82 | -7.30 | -8.78 | -10.25 | -11.73 | 12501 |
| -11.69 | -11.58 | -11.39 | -11.13 | -10.79 | -10.37 | -9.89 | -9.32 | -8.68 | 13501 |
| -7.97 | -7.19 - | -6.33 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14501 |
| 0.0 | -1.50 | -3.00 | - 4.50 | -6.00 | -7.50 | -9.00 | -10.50 | -12.00 | 15501 |
| -12.18 | $8-12.76$ | -13.70 | 7-13.52 | -13.18 | -12.77 | -12.28 | -11.71 | -11.07 | 16501 |
| -10.35 | -9.57 - | -8.70 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 17501 |
| 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -0.00 | 18501 |
| -0.18 | $8-0.76$ | -1.71 | $1-3.05$ | -4.76 | -6.85 | -9.32 | -12.16 | -13.45 | 19501 |
| -12.74 | -11.94 - | -11.07 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 20501 |
| 0.0 | 1.50 | - 3.00 | - 4.50 | 6.00 | 7.50 | 9.00 | 10.50 | 12.00 | 21501 |
| 11.81 | 11.23 | -10.28 | 88.94 | 7.22 | - 5.12 | $2 \quad 2.64$ | -0.22 | -3.47 | 22501 |
| -7.08 | -11.06- | -13.44 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 23501 |
| 0.0 | 3.00 | 6.00 | 9,00 | 12.00 | 15.00 | 18.00 | 21.00 | 24.00 | 24501 |
| 23.80 | - 23.23 | 22.27 | $7 \quad 20.92$ | 19.19 | 17.08 | 14.59 | 11.71 | 8.45 | 25501 |
| 4.83 | $3 \quad 0.83$ | -3.59 | 90 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 26501 |
| 0.0 | 4.50 | - 9.00 | 13.50 | 18.00 | 22.50 | 27.00 | 31.50 | 36.00 | 27501 |

Figure 7. Example Card Imaje

| 35.80 | 35.23 | 3 34.26 | 32,91 | 131.17 | 729.04 | 26.54 | 423.65 | 20.38 | 28501 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 16.73 | 312.71 | 18.27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 29501 |
| 0.0 | 6.00 | - 12.00 | 18.00 | O 24.00 | 30.00 | 36,00 | 42.00 | 48.00 | 30501 |
| 47.80 | - 47.22 | 246.25 | 44.89 | 43.14 | 4 41.01 | 38.49 | 35.59 | 32.29 | 31501 |
| 28.63 | 324.59 | - 20.13 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 32501 |
| . 0 | 7.50 | - 15.00 | 22.50 | O 30.00 | 37.50 | 45.00 | 52.50 | 60.00 | 33501 |
| 59.80 | $0 \quad 59.22$ | 228.24 | 46.88 | 855.12 | - 52.97 | 50.44 | 47.52 | 44.21 | 34501 |
| 40.53 | 36.47 | 732.00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 35501 |
| -600.00 | 1200.00 | - 120.00 | 5706. | 9306.72 | 3 300. | 8.0 |  |  | 0502 |
| 93.47 | 86.128 | 71.384 | 49.156 | 19.355 | -18.118 | $-6.3 .384$ | -116. |  | 1502 |
| 81.5 | 80.5 | 79.5 | 78.5 | 77.5 | 76.5 | 75.5 | 74.5 |  | 2502 |
| -0.04 | 0.81 | 1.73 | 2.72 | 3.79 | 4.91 | 6.11 | 7.39 | 7.47 | 3502 |
| 7.47 | 7.47 | 7.47 | 7.47 | 0.0 | 0.0 | 0.0 | 0.0 | 0. | 4502 |
| -2.41 | -1.56 | -0.63 | 0.36 | 1.43 | 2.56 | 3.76 | 5.05 | . 38 | 5502 |
| 7.47 | 7.47 | 7.47 | 7.47 | 0.0 | 0.0 | 0.0 | 0.0 | 0. | 602 |
| -4.79 | -3.94 | $-3.00$ | -2.00 | -0.94 | 0.21 | 1.42 | 2.70 | 4.05 | 7502 |
| 5.99 | 6.98 | 7.47 | 7.47 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8502 |
| -7.17 | -6.3 | -5.37 | -4.37 | -3.29 | $-2.15$ | -0.92 | 0.36 | 1.71 | 9502 |
| 3.16 | 4.66 | 6.23 | 7.47 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10502 |
| -9.55 | -8.68 | -7.74 | -6.73 | -5.65 | -4.50 | -3.27 | -1.98 | -0.62 | 11502 |
| 0.83 | 2.34 | 3.91 | 5.53 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 12502 |
| -11.92 | -11.05 | -10.11 | -9.09 | $-8.01$ | $-6.85$ | 62 | -4.32 | $-2.93$ | 13502 |
| -1.50 | 0.02 | 1.57 | 3.23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14502 |
| -11.15 | 5-13.42 | -12.48 | -11.45 | -10.37 | -9.20 | -7.96 | -6. 65 | -5.27 | 15502 |
| -3.82 | -2.34 | -0.74 | 0.92 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 16502 |
| 0.73 | - -3.69 | -8.44 | -13. | . 72 | -11.55 | -10.31 | . 99 | . 60 | 7502 |
| -6.15 | -4.66 | -3.05 | -1.41 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 18502 |
| 12.62 | 28.17 | 73.40 | -1.76 | $6 \quad-7.24$ | -13.13 | 2.65 | -11.33 | -9,93 | 19502 |
| -8.48 | -6.98 | -5.36 | -3.71 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 20502 |
| 24.50 | - 20.03 | 315.23 | 10.0 | 4.54 | -1.38 | -7.68 | -13.66 | -12.27 | 502 |
| -10.80 | $-9.29$ | -7,67 | $-6.01$ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 22502 |
| 36.37 | 731.90 | - 27.06 | 21.8 | 16.32 | 10.39 | 4.04 | - -2.65 | -9.68 | 23502 |
| -13.12 | -11.56 | -9.98 | -8.31 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 24502 |
| 48.25 | 543.75 | 538.89 | 33.67 | 28.10 | 122.13 | 15.75 | 9.11 | 1.97 | 25502 |
| -5.43 | -13.27 | 7-12.29 | $-10.59$ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 26502 |
| 60.13 | 35.61 | 150.72 | 45.47 | 39.87 | 733.88 | 27.46 | 20.79 | 13.61 | 27502 |
| 6.11 | $1-1.70$ | - -9.75 | -12.89 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 28502 |
| 72.01 | 167.46 | 6 62.55 | 57.27 | 751.63 | - 45.62 | 39.19 | 32.47 | 25.25 | 29502 |
| 17.71 | 19.86 | $6 \quad 1.77$ | -6.73 | $3 \quad 0.0$ | 0.0 | 0.0 | 0.0 | 0.0 | 30502 |
| 83.88 | 879.31 | 174.38 | 69.06 | $6 \quad 63.40$ | 57.35 | 50.89 | - 44.14 | 36.89 | 31502 |
| 29.31 | 121.58 | 13.29 | 4.57 | $7 \quad 0.0$ | 0.0 | 0.0 | 0.0 | 0.0 | 32502 |
| 95.75 | 91.16 | 6 86.20 | 80.88 | 875.16 | 69.05 | 62.59 | 55.71 | 48.52 | 33502 |
| 41.14 | 133.14 | 424.81 | 16.05 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 34502 |
| -120.00 | 1680.00 | O 120.00 | 8949.12 | 211949.12 | 3300.00 | 88.0 |  |  | 0503 |
| 782.658 | 775.073 | 759.762 | 736.594 | 705.409 | 666.037 | 618.285 | 561.942 |  | 1503 |
| 73.5 | 72.5 | 71.5 | 70.5 | 69.5 | 68.5 | 67.5 | 66.5 |  | 2503 |
| 3.61 | 5.20 | 6.89 | 7.47 | 7.47 | 7.47 | 7.47 | 7.47 7 | 7.47 | 3503 |
| 7.470 | 07.970 | 00.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4503 |
| 1.29 | 2.90 | 4.60 | 6.38 | 7.47 | 7.47 | 7.47 | $7.47 \quad 7$ | 7.47 | 5503 |
| 7.47 | 7.47 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6503 |
| $-1.02$ | 0.60 | 2.30 | 4.09 | 5.94 | 7.47 | 7.47 | 7.477 | 7.47 | 7503 |
| 7.47 | 7.47 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8503 |
| -3.36 | -1.70 | 0.0 | 1.84 | 3.66 | 5.68 | 7.47 | $7.47 \quad 7$ | 7.47 | 9503 |
| 7.47 | 7.47 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10503 |
| -5.67 | -4.01 | -2.26 | -0.45 | 1.38 | 3.28 | 5.34 | 7.417 | 7.47 | 11503 |
| 7.47 | 7.47 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 12503 |
| -7.98 | -6.34 | -4.55 | -2.74 | -0.83 1 | 1.01 | 3.08 | 5.167 | 7.30 | 13503 |

Figure 7. (Continued)

| 7.47 | 7.47 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  | 14503 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -10.30 | -8.64 | -6.84 | -5.01 | -3.11 | -1.26 | 0.82 | 2.97 | 5.06 | 15503 |
| 7.24 | 7.47 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 16503 |
| -12.61 | -10.94 | -9.16 | -7.29 | -5.38 | -3.44 | -1.41 | 0.72 | 2.82 | 17503 |
| 5.01 | 7.16 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 18503 |
| -8.08 | -13.24 | -11.45 | -9.57 | -7.62 | -5.71 | -3.66 | -1.52 | 0.53 | 19503 |
| 2.78 | 4.95 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 20503 |
| 3.45 | -5.06 | 6-13.74 | -11.89 | -9.99 | -7.97 | -5.92 | -3.87 | -1.70 | 21503 |
| 0.56 | 2.65 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 22503 |
| 14.90 | 6.43 | 3 -2.51 | -11.79 | 9-12.16 | $-10.24$ | -8.18 | -6.12 | -3.93 | 23503 |
| -1.90 | 0.44 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 24503 |
| 26.43 | 17.91 | 8.74 | -0.39 | 9 -9.86 | -12.50 | -10.43 | -8.36 | -6.13 | 25503 |
| -4.13 | -1.77 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 26503 |
| 37,95 | 29.21 | 120.17 | 11.00 | 01.49 | -8.86 | -12.62 | -10.54 | -8.36 | 27503 |
| -6.35 | -3.91 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 28503 |
| 49.59 | 40.68 | 31.60 | 22.05 | 512.82 | 2.31 | $1-8.30$ | 30-12.77 | -10.58 | 29503 |
| -8.44 | -6.12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 30503 |
| 61.10 | 52.14 | 442.95 | 533.42 | 24.15 | 13.58 | $8 \quad 2.92$ |  | 23-12.81 | 31503 |
| -10.65 | -8.32 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 32503 |
| 72.60 | -63.72 | 254.37 | 74.79 | 935.07 | 24.85 | 514.68 | 83.8 | $34-7.47$ | 33503 |
| -12.95 | -10.48 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 34503 |
| 1.0 | 1.0 | 1.0 |  |  |  |  |  |  | 0506 |
| 0.0 | 2814.665 | 52814.665 | 53229.201 | 13229.201 | 13643.488 | 83643.488 | 884057.39 | 551.0 | 0515 |
| 4057.395 | 54470.797 | 74470.797 | 74883.566 | 64883.566 | 65295.578 | 85295.578 | 785708.00 | 1.0 | 1515 |
| 5706.711 | 16116,836 | 66116.836 | 66525,928 | 86525.828 | 2693.562 | 26933.5627 | 27339.92 | 2220 | 2515 |
| 7339.922 | 27744.770 | 07744.770 | 08147.992 | 28147.992 | 28549.465 | 58549.46 | 58950.0 |  | 3515 |
| 8949.00 | 9346.664 | 99346.664 | 49742.14881 | 89742.148 | 10135.41 | 110135.41 | 110526.3 | 303.0 | 4515 |
| 10526.30 | 20914.72 | 210914.72 | 211300.54 | 541300.54 | 111683.66 | 611683.66 | 612080.9 | 43.0 | 5515 |
| , 120 KPH |  |  |  |  |  |  |  |  | 0600 |
| -4.29 | 0.73 | 93.82 | 0.26 | 0.0 | -4.37 | -0.71 | 0.0 | 0.0 | 0601 |
| 75.36 | 4194,84 | -22.68 | 1308.0 | 15.0 | 1.68 |  |  |  | 0602 |
| -0.77 | 0.53 | -0.03 | -1.25 |  | 0.0 |  |  |  | $0603$ |
| END OF DATA |  |  |  |  |  |  |  |  |  |

Figure 7. (Continued)

```
D!1/10 C SIBROUTINE DRIVER FOR HVOSM RD-2
05720 C
05730 SIBROUTINE DRIVER(PSI,DPSI, 山, IFLAG,A,B,ATTX,OMGPS)
05740 DIMENSION AMTX(3,3),PPD(50),TPD(50)
O5750 COHYON/PATHD/IPATH,KLI,DI(10),RLI(10),NPTS,KINIT,YINIT,
05760 1 PSA,DELL,X(100),Y(100),DX(100),DY(100),D(100)
05770 COPHON/HAGON/IHAGN, TPRB, LPRB, PLGTH, PMIN, PMAK, PGAIN, QCAIN, PSIFD
05780 CONPNN/FILT/ IFILT,TIL ,TI ,TMT ,TAKF
05790 COHHON/INTG/ NEQ ,T ,DT ,VFR(50),DER(50)
05800 COHATON/ACC/CHFCG,CMFA1, CIFA2
05810 DATA NPD4AX/50/,NPD/O/,DPSL/O.0/,N/0/
05820 JJ = 0
05830 IF(IHAGN,EQ,0)GO TO 90
```



```
05850 PSIA = PSI
05860 DTP = DPRB
05870 DPS =0.0
05880 DPSI = 0.0
05890 IF(IFLAG.EQ.0)GO TO 90
05900 IF(TPRB.GT.T + 0.1FDT)GO TO 10
05910 C COHPUTE NEN CHANGE IN STEER ANGLE
05920 TPRB = TPRB + DPRB
05930 XP = VAR(18) + AMTX(1,1) &PLGTH
05940 YP = VAR(19) + AMTX(2,1) FPLGTH
05950 CALL PROBE (XP,YP,NPTS,X,Y,DX,DY,D,IPRB,DIST,XX,YY)
05960 C SELECTED POINT INOEY IPRB AND LOCATION OF CLOSEST POINT ON PATH XX,YY
05970 C ARE NOT CLRRENILY USED
05980 IF(DIST.EQ.0.0)G0 T0 8
05990 SGN(D=[IST/ABS(MIST)
06000 IF(T.NE.TPRB) DDIST = (DIST-DISTA)/IPRRB
060109 IF(ABS(DIST),GT.PNIN)DPS = -PGAIN&(ABS(DIST)-PMIN):SGND
06020 1 -QGAINSDDIST
060308 IF(ABS(DIST),LE.PNIN) DPS= -GGAIN*DDIST
06040 IF(IFILT.EQ.0)GO TO 55
06050 IF(NPD.EQ.NPDMAK)GO TO 10
06060 NPD = MPD + 1
06070 PPD(NPD) = DPS - PSIA
05080 TPD(NPD) = T + TAUF
06090 10 IF(IFILT.EQ,0)00 TO 55
0 6 1 0 0 ~ C
0 6 1 1 0 ~ [ . ~ F I L T E R ~
06120 C
06130
06140 TPDTMP = TPD(N)
06150 [00 20 NN = i,NPD
06160 N = NPD + 1 - NN
06170 20 IF(T.GE.TPD(N))GO TO 30
06180 GO TO 90
06190 30 IF(TPDTMP.LT,TPD(N)) DPSL = 0.0
06200 DPSI = PPD(N) &TMTXEXP(-(T - TPD(N))/TIL)/THL
06210 [PPSN = PPD(N) - TIL&DPSI
06220 DTP =0.0
06230 DPS = DPSN - IPSL
05240 DPSL = DPSN
06250 IF(NPD.EQ.1)GO TO 50
06260 C
06270 C
```

Figure 8. Subroutine DRIVER

```
06280 35 L = 1
06290 DO 40 N = N,NPD
06300 PPD(L) = PPD(NN)
06310 TPD(L) = TPD(NN)
06320 40 L = L + 1
06330 NPD = L - 1
0 6 3 4 0 ~ C ~
06350 50 PSI = PSIA + DPS
06360 G0 T0 58
06370 55 PSI = DPS
06380 58 CONTINE
06390 C CHECX PREVIOUS TINE INTERNAL COAFORT FACTOR (SEE SUBROUTINE OUTPUT)
06400 C IF GREATER THNN PMAX ALLON ORLY REDHCTION IN STEER ANGLE
06410 IF(\PMAX.GT,0.01.AND. (ABS(CNFAL),LT, FMAX))GO TO 60
06420 IF(ABS(PSI).GT,ABS(PSIA)) PSI=PSIA
06430 60 CONTIME
06440 C CHECX MAX STEER ANGLE
06450 IF(\OMGPS.GT.0.0),AND, (AES(PSI) .GT. OAHPSS))
06460 1 PSI = SIGN(ONGPS,PSI)
06470 IF(DTP.NE.0.0)DPSI = (PSI-PSIA)/DTP
```



```
06490 DPSO = DPS*57.2958
06500 PSIAO = PSIA*57.2958
06510 PSIO = PSI*57.2958
06520 DELPSI = PSIO- PSI&O
06530 XPFT = XP/12.0
06540 YPFT = YP/12.0
06550 XXFT = XX/12.0
06560 YYFT = YY/12.0
06570 C IF(FKD.EQ.1.0) GO TO 90
06580 IF(KPAGE.LE.50.AND.T.NE,0.0000) GO TO 110
06590 HRITE(50,100)
0 6 6 0 0 ~ 1 0 0 ~ F O R N A T S ~
06610 AlH1,33X,37HPROBE COORDINATES PATH COORDINATES,5X,3HPSI,6X,
06620 E3HDPS,6X,4HPSIA,2X,7HDPSI ,2X,7HDPSN ,5HIFLAG,2X,4HIPRB/
06630 C31H TIME DELTA PSIF ERROR,6X,1HX,9X,1HY,10X,1HX,8X,1HY/
06640 [31H (SEC) (DEG) (IN) ,4X,4H(FT),6%,4H(FT),7X,
06650 E4H(FT),5X,4H(FT)/)
06660 KPAGE = 0
06670 110 WRITE(50,120) T,DELPS1,DIST,XPFT,YPFT, XXFT, YYFT,PSIO, DPSOO,
06680 A PSIAD,DPSI,DPSN, IFLAG,IPRB
06690 120 FORMAT(1H ,F7.3,2(4X,F7.3),2(3X,F7.1),2X,2(2X,F7.1),3(2X,F7.4),
06700 A 2X,F7.5,2X,F7,5,2X,13,2X,12)
06710 KPAGE = KPACE + 1
06720 90 RETURN
```



```
06740 END
```



Figure 8. (Continued)

```
133100 C SUBROUTINE PATH: PATHM.FOR
133200 C PATH GENERATOR HMCSM RD-2
133300 SUBROUTINE PATH
133&00 COHMON/PATHD/IPATH,KLI,DI(10),RLI(10),
133500 1 NPTS,XINIT,YINIT,PSA, DELL,
133600 2 X(100),Y(100),DY(100),DY(100),D(100)
133700 C LIMIT ARRAY SIZES
133800 IF(KLI.GT.10)KLI = 10
133900 IF(NPTS.GT.100)NPTS = 100
134000 CALL SETDIKLI,DI,RLI,NPTS,DELL,D)
134100 C SETD NAS MIDIFIED ON 30 DEC 1980 TO PRODUCE SPIRAL
134200 C INITIALIIE FIRST POINT AND TANGENT
134300 X(1) = XINIT
134400 Y(1) = YINLT
134500 DX(1) = COS(PSA)
134600 DY(1) = SIN(PSA)
134700 C
134800 CALL PATHG(NPTS,DELL,X,Y,D,DX,DY)
134900 C
135000 RETUPN
```



```
135200 END
```

Figure 9. Subroutine PATH

```
135400 C PATHG
135500 C PATH GENERATOR, SUBRTAUTINE PATHG
135600 C
135700 SUBROUTINE PATHG(NPTS,DELL,X,Y,D,DX,DY)
135800 DIMENSION X(1),Y(1),DX(1),DY(1),D(1)
135900 DATA RAD/0.017453292519943296/
136000 C INITIALIIE
136100 COAS = DELL*RAD/200.0
136200 C*
136300 DXX = DELLSDX(1)
136400 DYY = DEL &DY(1)
136500 [*
136600 DSI =0.0
136700 DC1 = 1.0
136800 C START LOOP
136900 [0 20I = 2, NPTS
137000 COAPUTE SINE AND COSINE OF HALF SECTOR ANGLE
137100 DS2 = CONSID(I-1)
137200 DC2 = SORT((1,0-DS2)*(1.0+DS2))
137300 CF+
137400 COMPITE SINE AND COSINE OF SECTOR ANGLE
137500 SP = 2.0 [DS2*DC2
137600 CP = 1.0-2.0*DS2##2
137700 C IPPATE TANGENT VECTOR
137800 DX(1) = CP&DX(I-1) - SP:DY(I-1)
137900 DY(I) = SPIDX(I-1) + CP¥DY(I-1)
138000 [%*
138100 CDAPPTE SINE AND COSINE OF AVERAGE SECTOR ANGLE
138200 SP = DS1*DC2 + DC1*IS2
138300 CP = DC1FOC2 - [S1HDS2
138400 COMTUTE NEN INCREIGENTS
139500 DXS = DXX
138600 DXX = DXS*CP - DYY&SP
138700 DYY = BYS:SP + DYY#CP
139800 C UPDATE POSITION
138900 X(I) = XII-1) + DXX
139000 Y(I) = Y(I-1) + DYY
139100 C SAVE SINE AND COSINE OF HALF SECTOR ANGEE FOR NEXT I
139200 DS1 = DS2
139300 20 DC1 = DC2
139400 RETUFN
139500 C
139600 C
139700 C
139710 END
```

Figure 10. Subroutine PATHG

| 140800 C PROEE |  |
| :---: | :---: |
| 140900 | SUBROUTINE PROBE: CALCllates distance of a point frow centerline |
| 141000 |  |
| 141100 | SUPRROUTINE PROBE (XP, YP, M, X, Y, DX, DY, D, 1, DIST, XY, YY) |
| 141200 | DIMENSION X(1), Y 11$), \mathrm{DX}(1), \mathrm{DY}(1), \mathrm{D}(1)$ |
| 141300 | DATA RAD/0.017453292519943296/, ILAST/1/ |
| 141400 C INITIALILE |  |
| 141500 | 1 = JLAST |
| 141600 | TEST $=$ DX(I) $*(X P-X(I))+$ DY( 1$) *(Y P-Y(I))$ |
| 141700 | TSAU $=$ SIGN(1.0, TEST) |
| 141800 | G0 1015 |
| 141900 C |  |
| 142000 C START SEARCH |  |
| 142100 C |  |
| 142200 | $7 \mathrm{I}=1+1$ |
| 142300 | IF(I.LE.MIGO TO 10 |
| 142400 | 1F(TSAV.LT, 0.0) 000 TO 20 |
| 142500 | $\mathrm{I}=\mathrm{M}$ |
| 142600 | M T0 25 |
| 142700 | 10 TEST $=$ DX $(1) *(X P-X(1))+$ DY(I) $)(Y P-Y(1))$ |
| 142800 | IFITEST\&TSAV.LE.0.0160 T0 25 |
| 142900 | 15 IF(TEST)20,25,7 |
| 143000 | 20I $=1-1$ |
| 143100 | LFII,GE.1)00 T0 10 |
| 143200 | IF(TSAV.GT.0.0)G0 TO 7 |
| 143300 | $1=1$ |
| 143400 C |  |
| 143500 C FINISH SEARCH |  |
| 143600 | 25 IF(4TEST.LT.0.0).AAD. (I.GT.1)/I=I-1 |
| 143700 | ILAST $=1$ |
| 143800 C FINISH OF DETERHINATION OF I |  |
| 143900 C |  |
| 144000 C |  |
| 144100 C |  |
| 144200 C |  |
| 149300 CALCULATE DISTANCE |  |
| 144400 | $\mathrm{ZDN}=-\mathrm{DY}(\mathrm{I}) *(\mathrm{XP}-\mathrm{X}(\mathrm{I}) \mathrm{l}+\mathrm{DX}(\mathrm{I}) \times(\mathrm{YP}-\mathrm{Y}(\mathrm{I})$ ) |
| 144500 | CONS $=\mathrm{D}(1) * \mathrm{RAD} \times 0.005$ |
| 144600 | ZDI $=((X P-X(1)) 4 \pm 2+(Y P-Y(1))+* 2) * C O N S$ |
| 144700 |  |
| 144800 C |  |
| 144900 Calcalate position of closest approach point on arc |  |
| 145000 C THE FOLLOWING CODE MAY BE DELETED AND THE PEFERENCES TO XX AND YY TAXE |  |
|  |  |
|  |  |
| 145300 | DEN $=1.0-2.0 \pm$ DISTECONS |
| 145400 C |  |
| 145500 | IF (DEN, GT. 0.0160 TO 30 |
| 145600 | WRITE 6,26 ) , XP, YP, DIST, DEN |
| 145700 | 26 FORTAT(' SUBPRUTINE Probe has negative or zero denoninator'/ |
| 145800 | $X^{\prime}$ IN POSITION FORARLA: IMPLIES POINT NOT IN SECTOR'/I6, 4F10.4) |
| 145900 | STOP |
| 146000 C THIS STOP SHOLD MEYER OCCUR IN NORMAL USACE |  |
| $146100 \mathrm{C}$ |  |
| 146200 | $30 \mathrm{XX}=(\mathrm{XP}-\mathrm{X}(\mathrm{I})+\mathrm{DIST}$ PDY(I) $) /$ DEN $+X(1)$ |
| 146300 | $Y Y=(Y P-Y(I)-D I S T X D X(I) / 2 D E N+Y(I)$ |
| 146400 | 35 RETURN |
|  |  |
| 146600 | END |

Figure 11. Subroutine PROBE

```
146800 C SUBPOUTINE SETD FOR HNOSH RD-2
146900 C ROUTINE TO SET DEGREE OF CURNATURE FROH DI'S
147000 C
147100 SUBROUTINE SETD(KLI,DI,RLI,NPTS,DEL,D)
147200 DIFENSION DI(1),PLI(1),D(1)
147300 C INITIALIZE
147400 L = 1
147500 2 = 0.0
147600 DEL2 = DEL*0.5
147700 C START LOOP
147800 DO 10 N = 1,NPTS
147900 D(N) = DI(L)
148000 IF(L.EQ.KLI)GO TO 10
148100 IF(I+DELL2.LT.RLI(L))G0 T0 10
148200 D(N)=D(N) + (DI(L+1)-DI(L))*(2-RLI(L) + DELI)
148300 1
148400 IF(2+DELL2.GT.RLI(L+1))L = L + 1
148500 10 I = DEL\*FOAT(N)
148600 RETLRN
148700 END
```

Figure 12. Subroutine SETD
The following pages document representative output from the 13 HVOSM cross- slope break simulations. The following parameters apply:
Run CSB-16A
Initial Speed: 80 km/h
Roadway Radius: 210 m
Roadway Superelevation: 10 percent
Shoulder Slope: -4 percent
Vehicle Path Radius: $164 \mathrm{~m}-\mathrm{f}$ four-wheel excursion


TEST CONDITIONS
Initial Speed .. $80 \mathrm{~km} / \mathrm{h}$
$\begin{array}{lrlrr}\text { ROADWAY GEOMETRY } & \text { VEHICLE } & \\ \text { Centerline Radius } & 210 \mathrm{~m} & \text { Path Radius } & 164 \mathrm{~m} \\ \text { Superelevation } & +10 \% & \text { Probe Length } & 12.7 \mathrm{~m} \\ \text { Shoulder Slope } & -4 \% & \text { P Gain } & 0.047 \mathrm{Rad} / \mathrm{m} \\ & & \text { Q Gain } & 0.004 \mathrm{Rad}-\mathrm{sec} / \mathrm{m} \\ & & \text { Driveline Braking } & 1 \mathrm{~m} / \mathrm{s}^{2}\end{array}$

## KEY

| Lateral Acceleration |  |
| :--- | :--- |
| RF, RR, LF, LR | Discomfort Factor <br> Denotes Time at Which <br> Respective Tires Contact <br> Cross-Slope Break |

*iNote: $1 \mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$

Figure 13. Example HVOSM Output for Studies of Cross-slope Breaks --Discomfort Factor and Lateral Acceleration vs. Time


| TEST CONDITIONS |  |  |  | KEY |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Initial Speed .- $80 \mathrm{~km} / \mathrm{h}$ |  |  |  |  |  |
| ROADWAY GEOM | ETRY | VEHICLE |  |  | Right Rear Tire |
| Centerline Radius | 210 m | Path Radius | 164 m |  | Left Front Tire |
| Superelevation | +10\% | Probe Length | 12.7 m |  | Left Rear Tire |
| Shoulder Slope | -4\% | P Gain | 0.047 Rad/m | RF, RR, LF, LR | Denotes Time at Which |
|  |  | Q Gain | 04 Rad-sec/m |  | Respective Tires Contact Cross-Slope Break |

Figure 14. Example HVOSM Output for Studies of Cross-slope Breaks --Tire Friction Demand vs. Time


TEST CONDITIONS
Initial Speed .. $80 \mathrm{~km} / \mathrm{h}$

| ROADWAY GEOMETRY | VEHICLE |  |  |
| :--- | ---: | :--- | ---: |
| Centerline Radius | 210 m | Path Radius | 164 m |
| Superelevation | $+10 \%$ | Probe Length | 12.7 m |
| Shoulder Slope | $-4 \%$ | P Gain | $0.047 \mathrm{Rad} / \mathrm{m}$ |
|  |  | Q Gain | $0.004 \mathrm{Rad}-\mathrm{sec} / \mathrm{m}$ |
|  |  | Driveline Braking | $1 \mathrm{~m} / \mathrm{s}^{2}$ |

KEY
RF, RR, LF, LR Denotes Time at Which Respective Tires Contact Cross-Slope Break

Figure 15. Example HVOSM Output for Studies of Cross-slope Breaks...
Roll Angle vs. Time

## GEDERALLY OODRDLNATELPROGRAN STPM OE FIGTMAY RESEABCTH ANL DEVXLOPMIENT

The Offices of Tesearch and Development ( $\mathbb{R}$ \& $\mathcal{B}$ ) of the Federal Highway Adminisiration ( $N H$ WA) are responsible for a broad program of staff and contract research and development and a Federal-aid progrem, conducted by or through the State highway transportation agencies, that includes the Fighway Planning and Reseerch ( $\mathrm{H} 3 \mathrm{~B} R$ ) program and the National Nooperative R:ghway Research Program ( $\mathbb{N C H R P}$ ) managed by the Transporiation Research Board. The FCP is a carefully selected group of projects that uses research and development resources to obtain timely solutions to urgent national highway engineering problems. ${ }^{\text {o }}$
The diagonal double stripe on the cover of this report represents a highway and is color-coded to identify the $\mathbb{F C P}$ category that the report falls uncer. A red stripe is used for caiegory 1 , dark blue for category 2 , light blue for category 3, brown for category 4 , gray for category 5 , green fo: categories 6 and 7 , and an orange stripe identifies category 0.

## FCIT Cavesury Descripuions

1. Improved [ifighway $\mathbb{D e s i g n}$ end $\mathbb{O}$ peraion for Saiery
Safety R\&D eddresses problems associated with the rasponsibilities of the $F H W A$ under the Highway Safety Aci and includes investigation of appropriaie design standards, roadside hardware, signing, and physical and scientific da:a for the formulation of improved sefety regulations.
 Improvec Qperquiouri
Traffic R\&B is concerned with increasing the operational efficiency of existing highways by advancing technology, by improving designs for existing as well as new facilities, and by balancing the demend-eejacity relationship through traffic managemeni techniques such as bus and carpool preferential treatmert, motorist information, and rercuting of traffic.
2. Envipommenti Comsidepaions im himinwoy Tesigm, Lockriom, Comsitucrion, emei (1perasios
Environmental $\mathbb{X}$ D is directed towarc identifying and evaluating kighway alements that affect

[^0]the quality of the human environment. The goals are reduction of adverse highway and traffic impacis, and protection and enhancement of the environment.
 Dureininity
Materials $\mathbb{R} D$ is concerned with expanding the 'nowledge and technology of materiels properties, using available natural materials, improving structural foundation materials, recycling highway materials, converting industrial wasies into useful highway products, developing extender or substitute materiels for those in short supply, and developing more rapid and reliable testing procedures. The goals are lower highway construction costs and extended maintenance-free operation.
5. Improveci Design so Reduce Cosis, Exseme: Lifie Expectarey, ami Insure Simwotral Selfecy
Structural R\&D is concerned with furthering the latest iechnological advances in siructural and hydraulic designs, fabrication processes, and construction techniques to provide safe, efficient highways at reasonable costs.
©. Improved Teshmology for Fighwey Constucrion
This category is concerned with the research, development, and implementation of highway construction technology to increase productivity, reduce energy consumption, conserve dwindling resources, and reduce cosis while improving the quality and methods of construction.

## 7. Improved Jechralogy faz I-izinway ELairderamee

This caiegory addresses problems in preserving the Nation's highways and includes activities in physical maintenance, irsffic services, management, and equipment. The goal is to maximize operational efficiency and safety to the traveling public while conserving resources.
©. Onar New Sintiea
This category, not included in the seven-volume official statement of the TCP, is concerned with HDPR and NCTRP studies not specifically related to $P C P$ projects. These studies involve $\mathbb{R} \& D$ support of oiher ZEFA program office research.



[^0]:    "The complete seven-volume official statement of the FCP is available from the National Technical Information Service, Springfield, Va 22161. Single copies of the introductory volume are available without charge from Program Analyais (HRD-3), Offices of Research and Development, Federal Highway Administration, Washington, D.C. 20590.

